受(shou)鑄錠(ding)凝固收(shou)縮和(he)(he)(he)鑄型(xing)受(shou)熱(re)膨脹的(de)(de)影響,鑄錠(ding)和(he)(he)(he)鑄型(xing)接觸(chu)隨之發生變化,即形成(cheng)氣隙(xi),如下(xia)圖所示。當鑄錠(ding)和(he)(he)(he)鑄型(xing)間氣隙(xi)形成(cheng)以后,鑄錠(ding)向鑄型(xing)的(de)(de)傳(chuan)熱(re)方(fang)式不只是簡單的(de)(de)傳(chuan)導傳(chuan)熱(re),同時存在小區域的(de)(de)氣體(ti)導熱(re)和(he)(he)(he)輻射傳(chuan)熱(re),導致鑄錠(ding)-鑄型(xing)界(jie)(jie)面熱(re)阻(1/hz)發生非(fei)線性變化。界(jie)(jie)面熱(re)量傳(chuan)輸可分(fen)為如下(xia)三個階段(duan)。


  階(jie)段(duan)1: 在(zai)(zai)凝固(gu)初(chu)期,當表(biao)面(mian)溫度略低于鑄錠液(ye)(ye)相線溫度時(shi),在(zai)(zai)鑄錠外表(biao)面(mian)會形(xing)成(cheng)一(yi)定厚度的(de)半固(gu)態(tai)殼;此(ci)時(shi),在(zai)(zai)液(ye)(ye)體靜壓(ya)(ya)力和外界(jie)(jie)(jie)壓(ya)(ya)力(如(ru)凝固(gu)壓(ya)(ya)力和大(da)氣壓(ya)(ya)等)的(de)作用下,鑄錠和鑄型界(jie)(jie)(jie)面(mian)處于完(wan)全(quan)接(jie)(jie)觸狀(zhuang)態(tai),如(ru)圖2-84(a)所示,因而界(jie)(jie)(jie)面(mian)的(de)固(gu)固(gu)接(jie)(jie)觸熱(re)量傳輸方式在(zai)(zai)界(jie)(jie)(jie)面(mian)傳熱(re)過程中起主導作用, 此(ci)界(jie)(jie)(jie)面(mian)宏觀平均換(huan)熱(re)系數(shu)hz1可表(biao)示為


   h21=a+b·(P1+P3)  (2-167)


   式中,a和b為常(chang)量;Ph為液(ye)體靜壓(ya)力;Ps為外界壓(ya)力。


   階段(duan)2: 在(zai)給定外界(jie)壓(ya)力和液(ye)體(ti)靜壓(ya)力條件下,半固(gu)(gu)態(tai)殼的(de)強度存(cun)在(zai)一個臨界(jie)值σm;隨(sui)(sui)著凝(ning)固(gu)(gu)過程的(de)進行(xing),半固(gu)(gu)態(tai)殼的(de)強度不斷增大;當強度大于臨界(jie)值時,半固(gu)(gu)態(tai)殼定型(xing);隨(sui)(sui)后鑄(zhu)錠(ding)半固(gu)(gu)態(tai)殼逐漸(jian)與鑄(zhu)型(xing)分(fen)離,固(gu)(gu)固(gu)(gu)接(jie)觸(chu)積逐漸(jian)減小,氣(qi)隙(xi)在(zai)界(jie)面(mian)(mian)(mian)某些位置形(xing)成(cheng)且其(qi)尺(chi)寸逐漸(jian)增大,導致鑄(zhu)錠(ding)和鑄(zhu)型(xing)界(jie)面(mian)(mian)(mian)處于半完全接(jie)觸(chu)狀(zhuang)態(tai),如圖2-84(b)所示(shi)。在(zai)此(ci)階段(duan),氣(qi)隙(xi)的(de)尺(chi)寸主要受由(you)液(ye)相(xiang)變固(gu)(gu)相(xiang)發生的(de)凝(ning)固(gu)(gu)收縮影響。盡管界(jie)面(mian)(mian)(mian)還存(cun)在(zai)部分(fen)固(gu)(gu)固(gu)(gu)接(jie)觸(chu),但界(jie)面(mian)(mian)(mian)熱(re)(re)阻隨(sui)(sui)著凝(ning)固(gu)(gu)的(de)進行(xing)不斷增大,由(you)于鑄(zhu)錠(ding)和鑄(zhu)型(xing)界(jie)面(mian)(mian)(mian)接(jie)觸(chu)方式的(de)變化(hua),界(jie)面(mian)(mian)(mian)熱(re)(re)量傳(chuan)(chuan)輸(shu)主要由(you)固(gu)(gu)固(gu)(gu)接(jie)觸(chu)傳(chuan)(chuan)熱(re)(re)、輻射(she)換熱(re)(re)以及氣(qi)相(xiang)導熱(re)(re)傳(chuan)(chuan)熱(re)(re)三分(fen)構成(cheng),其(qi)中,固(gu)(gu)固(gu)(gu)接(jie)觸(chu)傳(chuan)(chuan)熱(re)(re)仍(reng)然占據(ju)界(jie)面(mian)(mian)(mian)熱(re)(re)量傳(chuan)(chuan)輸(shu)的(de)主導地位。此(ci)階段(duan)界(jie)面(mian)(mian)(mian)宏觀平均換熱(re)(re)系數hz2可表(biao)示(shi)為(wei)


84.jpg


 此(ci)外(wai),隨著(zhu)凝(ning)固(gu)的(de)(de)進行,鑄錠和鑄型界(jie)面(mian)上固(gu)固(gu)接觸面(mian)積逐漸減(jian)小(xiao)(xiao),因(yin)而(er)階段1界(jie)面(mian)宏觀平(ping)均(jun)換熱(re)系(xi)數hz1最大,階段2界(jie)面(mian)宏觀平(ping)均(jun)換熱(re)系(xi)數hz2值次(ci)之,階段3界(jie)面(mian)宏觀平(ping)均(jun)換熱(re)系(xi)數hz3值最小(xiao)(xiao),這(zhe)與(yu)實(shi)際凝(ning)固(gu)過(guo)程中(zhong)界(jie)面(mian)換熱(re)系(xi)數逐漸減(jian)小(xiao)(xiao)的(de)(de)規律相互印(yin)證。同時,在鑄錠自身重力(li)的(de)(de)作用下,在鑄錠底部位置,界(jie)面(mian)半完全(quan)接觸狀態始終貫(guan)穿整個凝(ning)固(gu)過(guo)程,這(zhe)與(yu)鑄錠頂端(duan)界(jie)面(mian)固(gu)固(gu)接觸完全(quan)消(xiao)失有(you)所不同,如圖2-84(d)所示。


  凝固壓(ya)力在氣隙的(de)(de)(de)形成過程中(zhong)扮演了(le)十分(fen)重要的(de)(de)(de)角色(se)。研(yan)究(jiu)表明,增加(jia)凝固壓(ya)力(兆帕級)具有明顯(xian)的(de)(de)(de)強化冷卻效果,但(dan)在界(jie)面熱量傳輸變化的(de)(de)(de)三個(ge)階段(duan),加(jia)壓(ya)強化冷卻的(de)(de)(de)程度(du)大有不同。


 階(jie)(jie)段1:當壓力在幾兆帕下變化時,由(you)于物(wu)性參數(如強度、密度和(he)導熱(re)系數等(deng))的變化量可(ke)以忽略不計(ji),壓力對(dui)(dui)鑄錠和(he)鑄型界面(mian)完全(quan)接觸(chu)狀(zhuang)態影響較小,根據式(2-166)可(ke)知,壓力對(dui)(dui)界面(mian)宏觀平均(jun)換熱(re)系數的影響可(ke)以忽略不計(ji),因(yin)此增加壓力對(dui)(dui)階(jie)(jie)段1的界面(mian)換熱(re)影響很小。


  階(jie)段2:在此階(jie)段,鑄錠和鑄型界面非(fei)完全接觸狀態(tai)主要由凝(ning)固收縮(suo)控制。


  隨著壓(ya)力(li)的(de)增(zeng)(zeng)加(jia)(jia),半固(gu)(gu)態(tai)(tai)殼抵(di)抗(kang)變(bian)(bian)形所需臨界強度增(zeng)(zeng)大,因而加(jia)(jia)壓(ya)能(neng)夠抑制界面(mian)非完全(quan)接(jie)觸狀(zhuang)態(tai)(tai)的(de)形成,有(you)助(zhu)于(yu)將界面(mian)在整個凝固(gu)(gu)過(guo)程中實現保持固(gu)(gu)固(gu)(gu)接(jie)觸的(de)狀(zhuang)態(tai)(tai)。例如,隨著壓(ya)力(li)的(de)增(zeng)(zeng)加(jia)(jia),H13表面(mian)上的(de)坑變(bian)(bian)得淺平(ping),且(qie)數量逐漸減少,意味著鑄(zhu)錠表面(mian)越來越光滑,粗(cu)糙(cao)度減小,鑄(zhu)錠鑄(zhu)型界面(mian)處的(de)固(gu)(gu)固(gu)(gu)接(jie)觸面(mian)積增(zeng)(zeng)大。根據式(shi)(2-168)可知,界面(mian)宏觀(guan)平(ping)均傳(chuan)熱系數與壓(ya)力(li)趨于(yu)正比關(guan)系,加(jia)(jia)壓(ya)能(neng)夠顯著提升此階段界面(mian)宏觀(guan)平(ping)均換熱系數。因此,增(zeng)(zeng)加(jia)(jia)壓(ya)力(li)能(neng)夠強化鑄(zhu)錠鑄(zhu)型間界面(mian)固(gu)(gu)固(gu)(gu)接(jie)觸狀(zhuang)態(tai)(tai),抑制由凝固(gu)(gu)收縮導致界面(mian)氣隙的(de)形成,加(jia)(jia)快(kuai)鑄(zhu)錠鑄(zhu)型界面(mian)傳(chuan)遞,強化冷(leng)卻效果(guo)明顯。


  階段3:界(jie)(jie)(jie)(jie)面氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)的(de)(de)長大主要受控(kong)于(yu)固態收縮。隨(sui)著界(jie)(jie)(jie)(jie)面氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)尺寸的(de)(de)變大,外界(jie)(jie)(jie)(jie)逐(zhu)(zhu)步與界(jie)(jie)(jie)(jie)面氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)連通,在(zai)壓力(li)的(de)(de)作(zuo)用下,氣(qi)(qi)(qi)體逐(zhu)(zhu)漸進入(ru)界(jie)(jie)(jie)(jie)面氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)內,進而導致界(jie)(jie)(jie)(jie)面氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)與外界(jie)(jie)(jie)(jie)之間的(de)(de)壓差(cha)趨于(yu)零,壓力(li)對界(jie)(jie)(jie)(jie)面氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)的(de)(de)影響(xiang)逐(zhu)(zhu)漸消失。此階段,氣(qi)(qi)(qi)體導熱(re)換(huan)熱(re)與輻(fu)射換(huan)熱(re)為界(jie)(jie)(jie)(jie)面換(huan)熱(re)的(de)(de)主要方(fang)式。其中氣(qi)(qi)(qi)體導熱(re)換(huan)熱(re)系數(shu)(hc,g)主要由(you)氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)內氣(qi)(qi)(qi)體導熱(re)系數(shu)(kgap)和界(jie)(jie)(jie)(jie)面氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)尺寸(wgap)決定,作(zuo)為計算(suan)氣(qi)(qi)(qi)體導熱(re)換(huan)熱(re)系數(shu)的(de)(de)重要參數(shu),在(zai)給定壓力(li)下氣(qi)(qi)(qi)體導熱(re)系數(shu)(kgap)可由(you)下列公式進行計算(suan):


式 170.jpg



  綜上所述,在通過(guo)氣(qi)體維持壓(ya)力的加壓(ya)條件(jian)下,壓(ya)力對界面換(huan)熱系(xi)數的影響主要集中在界面氣(qi)隙形成的第二階(jie)段(duan),即在鑄錠殼凝固收縮階(jie)段(duan)加壓(ya)通過(guo)增大鑄錠殼抵抗(kang)變形所需(xu)臨(lin)界強度從(cong)而改善界面換(huan)熱,起到強化冷卻(que)的作用(yong)。


  以H13在0.1MPa、1MPa和(he)(he)(he)2MPa壓力下凝固為例,其(qi)(qi)凝固壓力通(tong)過(guo)充入氬氣(qi)獲得。為了分(fen)析加壓對界面(mian)(mian)氣(qi)隙(xi)尺寸和(he)(he)(he)換熱方式的影響規律,采用(yong)埋設熱電偶以及(ji)位(wei)移(yi)傳感器實(shi)驗,同時(shi)測(ce)量凝固過(guo)程中鑄(zhu)(zhu)(zhu)錠和(he)(he)(he)鑄(zhu)(zhu)(zhu)型(xing)(xing)溫度(du)變(bian)化(hua)(hua)曲(qu)(qu)(qu)線(xian)以及(ji)其(qi)(qi)位(wei)移(yi)變(bian)化(hua)(hua)曲(qu)(qu)(qu)線(xian),其(qi)(qi)中,1#和(he)(he)(he)2#熱電偶分(fen)別(bie)測(ce)量離鑄(zhu)(zhu)(zhu)錠外表面(mian)(mian)10mm和(he)(he)(he)15mm位(wei)置(zhi)處鑄(zhu)(zhu)(zhu)錠溫度(du)變(bian)化(hua)(hua)曲(qu)(qu)(qu)線(xian);3#和(he)(he)(he)4#熱電偶分(fen)別(bie)測(ce)量鑄(zhu)(zhu)(zhu)型(xing)(xing)內表面(mian)(mian)5mm和(he)(he)(he)10mm位(wei)置(zhi)處鑄(zhu)(zhu)(zhu)型(xing)(xing)的溫度(du)變(bian)化(hua)(hua)曲(qu)(qu)(qu)線(xian);位(wei)移(yi)傳感器LVDT1和(he)(he)(he)LVDT2的探頭(tou)位(wei)置(zhi)離鑄(zhu)(zhu)(zhu)型(xing)(xing)內表面(mian)(mian)徑向距離均(jun)為5mm,分(fen)別(bie)插入鑄(zhu)(zhu)(zhu)錠和(he)(he)(he)鑄(zhu)(zhu)(zhu)型(xing)(xing)中測(ce)量凝固過(guo)程中其(qi)(qi)位(wei)移(yi)變(bian)化(hua)(hua)曲(qu)(qu)(qu)線(xian)。測(ce)量溫度(du)和(he)(he)(he)位(wei)移(yi)變(bian)化(hua)(hua)曲(qu)(qu)(qu)線(xian)的裝置(zhi)如圖2-85所示。


85.jpg



  溫(wen)度(du)(du)測量曲線如圖(tu)2-86所(suo)示,對(dui)于鑄錠溫(wen)度(du)(du)測量曲線,存(cun)在“陡升”和“振(zhen)蕩”區(qu)域(yu),這主要由(you)熱電(dian)偶預熱和澆注引(yin)起鋼液湍(tuan)流分別造(zao)成。隨著(zhu)凝固過程的進行,鑄型溫(wen)度(du)(du)升高,鑄錠溫(wen)度(du)(du)不(bu)斷降低(di)。


86.jpg


  因(yin)(yin)鑄(zhu)(zhu)(zhu)(zhu)(zhu)型(xing)內(nei)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)和(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)外(wai)(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)溫度(du)幾乎(hu)難以(yi)通(tong)過實驗(yan)進(jin)行(xing)準確測量,因(yin)(yin)而(er)(er)可(ke)通(tong)過數值計(ji)(ji)算(suan)的方式獲得,即以(yi)測量的鑄(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)和(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)型(xing)溫度(du)變化(hua)曲線作為輸入量,采用(yong)Beck 非線性求(qiu)解法,計(ji)(ji)算(suan)鑄(zhu)(zhu)(zhu)(zhu)(zhu)型(xing)內(nei)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(Tw,i)和(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)外(wai)(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)溫度(du)(Twm),由于鑄(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)和(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)型(xing)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)非鏡面(mian)(mian)(mian)(mian)(mian),有一定粗糙度(du),因(yin)(yin)而(er)(er)計(ji)(ji)算(suan)所(suo)得鑄(zhu)(zhu)(zhu)(zhu)(zhu)型(xing)內(nei)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(Tw,i)和(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)外(wai)(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)溫度(du)(Tw,m)均(jun)為宏(hong)觀平(ping)均(jun)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)溫度(du),計(ji)(ji)算(suan)結果如圖2-87所(suo)示。當壓(ya)力(li)一定時(shi),在鑄(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)鑄(zhu)(zhu)(zhu)(zhu)(zhu)型(xing)界面(mian)(mian)(mian)(mian)(mian)換熱(re)(re)以(yi)及鑄(zhu)(zhu)(zhu)(zhu)(zhu)型(xing)外(wai)(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)散熱(re)(re)的影響(xiang)下,鑄(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)外(wai)(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)溫度(du)(Tw,i)在整個(ge)凝固(gu)過程中(zhong)持續(xu)降低,鑄(zhu)(zhu)(zhu)(zhu)(zhu)型(xing)內(nei)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(Tw,m)先增加(jia)而(er)(er)后逐漸降低。隨著壓(ya)力(li)從0.1MPa增加(jia)至(zhi)2MPa,鑄(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)外(wai)(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)降溫速(su)率和(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)型(xing)內(nei)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)升溫速(su)率明顯加(jia)快(kuai),表(biao)(biao)明加(jia)壓(ya)對(dui)鑄(zhu)(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)和(he)鑄(zhu)(zhu)(zhu)(zhu)(zhu)型(xing)界面(mian)(mian)(mian)(mian)(mian)間換熱(re)(re)速(su)率影響(xiang)顯著。


87.jpg


  當壓(ya)力(li)一定時(shi),界面氣(qi)(qi)(qi)隙(xi)(xi)(xi)寬(kuan)度(du)隨(sui)(sui)時(shi)間的(de)(de)(de)變(bian)化(hua)關系可(ke)通(tong)過凝(ning)固(gu)過程中鑄(zhu)(zhu)錠(ding)和(he)鑄(zhu)(zhu)型(xing)(xing)(xing)位移(yi)變(bian)化(hua)曲線(xian)獲得。基于(yu)位移(yi)傳(chuan)感(gan)(gan)器的(de)(de)(de)位移(yi)測量結果,所得界面氣(qi)(qi)(qi)隙(xi)(xi)(xi)寬(kuan)度(du)隨(sui)(sui)時(shi)間的(de)(de)(de)變(bian)化(hua)關系如圖2-88(a)所示,在(zai)0.1MPa、1MPa和(he)2MPa下,界面氣(qi)(qi)(qi)隙(xi)(xi)(xi)寬(kuan)度(du)隨(sui)(sui)時(shi)間變(bian)化(hua)規律基本相似。以(yi)2MPa為例,在(zai)凝(ning)固(gu)初期(qi),鑄(zhu)(zhu)錠(ding)、鑄(zhu)(zhu)型(xing)(xing)(xing)和(he)位移(yi)傳(chuan)感(gan)(gan)器之間存在(zai)巨大(da)溫差,使得位移(yi)傳(chuan)感(gan)(gan)器附近的(de)(de)(de)鋼液迅速凝(ning)固(gu),以(yi)至于(yu)無(wu)法測量階(jie)段2 中凝(ning)固(gu)收(shou)(shou)縮(suo)導(dao)致(zhi)的(de)(de)(de)氣(qi)(qi)(qi)隙(xi)(xi)(xi)寬(kuan)度(du);同(tong)(tong)時(shi),鑄(zhu)(zhu)錠(ding)和(he)鑄(zhu)(zhu)型(xing)(xing)(xing)初期(qi)溫差巨大(da),加(jia)速了(le)鑄(zhu)(zhu)型(xing)(xing)(xing)升(sheng)溫膨脹和(he)鑄(zhu)(zhu)錠(ding)冷卻收(shou)(shou)縮(suo),因而(er)在(zai)界面氣(qi)(qi)(qi)隙(xi)(xi)(xi)尺寸隨(sui)(sui)時(shi)間變(bian)化(hua)曲線(xian)前段不存氣(qi)(qi)(qi)隙(xi)(xi)(xi)尺寸緩慢(man)增長部(bu)(bu)(bu)分(fen)(fen),取而(er)代(dai)之的(de)(de)(de)是氣(qi)(qi)(qi)隙(xi)(xi)(xi)寬(kuan)度(du)隨(sui)(sui)時(shi)間的(de)(de)(de)陡升(sheng),而(er)且氣(qi)(qi)(qi)隙(xi)(xi)(xi)寬(kuan)度(du)的(de)(de)(de)陡升(sheng)很(hen)大(da)程度(du)由鑄(zhu)(zhu)錠(ding)固(gu)態收(shou)(shou)縮(suo)所致(zhi)。因此,位移(yi)傳(chuan)感(gan)(gan)器所測氣(qi)(qi)(qi)隙(xi)(xi)(xi)尺寸僅(jin)包含了(le)固(gu)態收(shou)(shou)縮(suo)導(dao)致(zhi)氣(qi)(qi)(qi)隙(xi)(xi)(xi)形(xing)成部(bu)(bu)(bu)分(fen)(fen),無(wu)因凝(ning)固(gu)收(shou)(shou)縮(suo)形(xing)成氣(qi)(qi)(qi)隙(xi)(xi)(xi)部(bu)(bu)(bu)分(fen)(fen)。在(zai)低壓(ya)下,增加(jia)壓(ya)力(li)對(dui)鑄(zhu)(zhu)型(xing)(xing)(xing)和(he)鑄(zhu)(zhu)錠(ding)的(de)(de)(de)密度(du)影(ying)響很(hen)小(xiao)(xiao),幾乎可(ke)以(yi)忽略(lve)不計,所以(yi)增加(jia)壓(ya)力(li)對(dui)鑄(zhu)(zhu)型(xing)(xing)(xing)固(gu)態收(shou)(shou)縮(suo)導(dao)致(zhi)氣(qi)(qi)(qi)隙(xi)(xi)(xi)的(de)(de)(de)尺寸影(ying)響非常小(xiao)(xiao),所以(yi)在(zai)0.1MPa、1MPa和(he)2MPa下,界面氣(qi)(qi)(qi)隙(xi)(xi)(xi)尺寸傳(chuan)感(gan)(gan)器量的(de)(de)(de)最大(da)值(zhi)幾乎相同(tong)(tong),約為1.27mm。


88.jpg



  根據(ju)氬氣(qi)導(dao)(dao)熱(re)(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)隨壓力的變(bian)化情況[圖2-89(a)]、凝(ning)固過(guo)(guo)程中(zhong)界面(mian)氣(qi)隙測量曲線和(he)(he)(he)鑄(zhu)錠外(wai)表(biao)面(mian)以(yi)及鑄(zhu)型內表(biao)溫度的變(bian)化曲線,利用式(2-171)和(he)(he)(he)式(2-172)可(ke)獲得氣(qi)隙形成(cheng)(cheng)階段3中(zhong)界面(mian)氣(qi)體(ti)導(dao)(dao)熱(re)(re)(re)(re)換(huan)(huan)(huan)(huan)熱(re)(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)hc,g和(he)(he)(he)輻射(she)換(huan)(huan)(huan)(huan)熱(re)(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)hr,以(yi)及換(huan)(huan)(huan)(huan)熱(re)(re)(re)(re)方式比(bi)(bi)例關系(xi)(xi),結果如圖2-89(b)所(suo)示。輻射(she)換(huan)(huan)(huan)(huan)熱(re)(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)不受界面(mian)氣(qi)隙尺寸的影響,在(zai)(zai)整個凝(ning)固過(guo)(guo)程中(zhong),基(ji)本保持不變(bian);相比(bi)(bi)之(zhi)下(xia),氣(qi)體(ti)導(dao)(dao)熱(re)(re)(re)(re)換(huan)(huan)(huan)(huan)熱(re)(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)主(zhu)要由(you)氣(qi)體(ti)導(dao)(dao)熱(re)(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)和(he)(he)(he)面(mian)氣(qi)隙尺寸共(gong)同(tong)決定(ding)(ding),與(yu)氣(qi)體(ti)導(dao)(dao)熱(re)(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)成(cheng)(cheng)正(zheng)比(bi)(bi),與(yu)界面(mian)氣(qi)隙尺寸成(cheng)(cheng)反(fan)比(bi)(bi),因而(er)在(zai)(zai)凝(ning)固過(guo)(guo)程中(zhong)氣(qi)體(ti)導(dao)(dao)熱(re)(re)(re)(re)換(huan)(huan)(huan)(huan)熱(re)(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)變(bian)化規律與(yu)界面(mian)氣(qi)隙尺寸的變(bian)化過(guo)(guo)程截然相反(fan),呈現(xian)先迅(xun)速減(jian)小,然后趨于(yu)定(ding)(ding)值。在(zai)(zai)各(ge)個壓力條件(jian)下(xia),隨著(zhu)凝(ning)固的進行(xing),界面(mian)總(zong)(zong)換(huan)(huan)(huan)(huan)熱(re)(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)(hc,g+h,)迅(xun)速減(jian)小,然后趨于(yu)穩定(ding)(ding),其中(zhong)輻射(she)換(huan)(huan)(huan)(huan)熱(re)(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)h1在(zai)(zai)總(zong)(zong)換(huan)(huan)(huan)(huan)熱(re)(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)中(zhong)的占比(bi)(bi)為(wei)60%~80%[120],且在(zai)(zai)凝(ning)固中(zhong)后期,0.1MPa、1MPa和(he)(he)(he)2MPa壓力下(xia),總(zong)(zong)界面(mian)換(huan)(huan)(huan)(huan)熱(re)(re)(re)(re)系(xi)(xi)數(shu)(shu)(shu)基(ji)本相等。由(you)此可(ke)知,低壓下(xia),加壓對由(you)固態收縮形成(cheng)(cheng)界面(mian)氣(qi)隙的尺寸影響幾(ji)乎(hu)可(ke)以(yi)忽略不計。


89.jpg

 根(gen)據以上(shang)討論(lun)可(ke)知,凝(ning)固(gu)結束后(hou),界(jie)(jie)面(mian)(mian)(mian)換(huan)(huan)(huan)熱(re)(re)(re)主(zhu)要通過(guo)(guo)氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)和(he)輻射換(huan)(huan)(huan)熱(re)(re)(re)兩種方式(shi)進(jin)(jin)行(xing),因加(jia)壓(ya)(ya)對(dui)輻射換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu)的(de)(de)(de)影響(xiang)(xiang)很(hen)小(xiao),那(nei)么加(jia)壓(ya)(ya)主(zhu)要通過(guo)(guo)改變界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu),從(cong)(cong)而起到強化(hua)冷卻(que)的(de)(de)(de)效果。同時,界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu)主(zhu)要由氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu)和(he)界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)體(ti)(ti)尺(chi)寸(cun)決定(ding),因壓(ya)(ya)力從(cong)(cong)0.1MPa增加(jia)至2MPa,氬氣(qi)(qi)導(dao)(dao)熱(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu)變化(hua)很(hen)小(xiao),進(jin)(jin)一(yi)步可(ke)知壓(ya)(ya)力主(zhu)要通過(guo)(guo)改變界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)(xi)宏(hong)觀平均(jun)尺(chi)寸(cun)影響(xiang)(xiang)界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu),進(jin)(jin)而改變界(jie)(jie)面(mian)(mian)(mian)總換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu)。此(ci)外,壓(ya)(ya)力對(dui)固(gu)態收(shou)縮(suo)導(dao)(dao)致(zhi)的(de)(de)(de)界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)(xi)尺(chi)寸(cun)影響(xiang)(xiang)幾(ji)乎可(ke)以忽(hu)略不(bu)計(ji)(ji),那(nei)么壓(ya)(ya)力主(zhu)要通過(guo)(guo)改變由凝(ning)固(gu)收(shou)縮(suo)導(dao)(dao)致(zhi)界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)(xi)的(de)(de)(de)尺(chi)寸(cun),從(cong)(cong)而影響(xiang)(xiang)界(jie)(jie)面(mian)(mian)(mian)換(huan)(huan)(huan)熱(re)(re)(re)。為了(le)評估壓(ya)(ya)力對(dui)凝(ning)固(gu)收(shou)縮(suo)導(dao)(dao)致(zhi)界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)(xi)形成的(de)(de)(de)影響(xiang)(xiang),利(li)用界(jie)(jie)面(mian)(mian)(mian)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu)對(dui)界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)(xi)宏(hong)觀平均(jun)尺(chi)寸(cun)(wm)進(jin)(jin)行(xing)計(ji)(ji)算(suan),計(ji)(ji)算(suan)公式(shi)如下:


  式中(zhong),hz3為宏觀(guan)界(jie)面(mian)(mian)(mian)換熱系數(shu),通過將測溫(wen)數(shu)據作為輸(shu)入(ru)量,利用Beck 非線(xian)性求解法獲得,計算(suan)流程(cheng)如圖2-78所(suo)示。在(zai)整(zheng)個凝固(gu)(gu)(gu)過程(cheng)中(zhong),界(jie)面(mian)(mian)(mian)氣隙宏觀(guan)平(ping)均尺(chi)(chi)寸(cun)(wm)明顯小于因固(gu)(gu)(gu)態收縮導(dao)致的(de)界(jie)面(mian)(mian)(mian)氣隙尺(chi)(chi)寸(cun)(wgap),同時,兩者差值(zhi)(wgap-wm)隨(sui)著壓(ya)力(li)的(de)增加而(er)增大(da)(圖2-90).這(zhe)表明在(zai)鑄錠和鑄型間存在(zai)一定的(de)固(gu)(gu)(gu)-固(gu)(gu)(gu)接觸區(qu)或(huo)微(wei)間隙區(qu)。這(zhe)些(xie)區(qu)域的(de)面(mian)(mian)(mian)積隨(sui)著壓(ya)力(li)的(de)增大(da)而(er)增大(da),從而(er)導(dao)致傳導(dao)換熱的(de)增加,這(zhe)與鑄錠表面(mian)(mian)(mian)粗糙度(du)的(de)實驗結(jie)果符合,也進一步說明了(le)加壓(ya)對界(jie)面(mian)(mian)(mian)氣隙尺(chi)(chi)寸(cun)的(de)影響主要集(ji)中(zhong)在(zai)凝固(gu)(gu)(gu)收縮階(jie)段。


90.jpg


  因(yin)此,加(jia)(jia)壓主(zhu)要(yao)通過(guo)抑制由(you)凝固(gu)收縮導致的氣(qi)隙(xi)形成(cheng),增大(da)固(gu)固(gu)接觸或微氣(qi)隙(xi)的界面(mian)面(mian)積,強化鑄錠(ding)和鑄型界面(mian)完全接觸狀態(tai)(tai),從而(er)增加(jia)(jia)界面(mian)氣(qi)體導熱換熱系數(shu);此外,加(jia)(jia)壓下(xia),界面(mian)換熱系數(shu)的增加(jia)(jia),加(jia)(jia)快了鑄錠(ding)固(gu)態(tai)(tai)收縮,導致凝固(gu)初期(qi)由(you)固(gu)態(tai)(tai)收縮引起(qi)的氣(qi)隙(xi)的尺(chi)寸快速增大(da)。





聯系方式.jpg