激光(guang)電(dian)(dian)弧復合焊(han)有時也稱(cheng)電(dian)(dian)弧輔助(zhu)激光(guang)焊(han)接技術,其主要目的是有效利(li)用(yong)激光(guang)和(he)電(dian)(dian)弧的熱(re)源,充分發揮兩種(zhong)熱(re)源各(ge)自優勢,取長補短(duan),以(yi)較小(xiao)的激光(guang)功率獲(huo)得較大的熔深(shen),穩(wen)定(ding)焊(han)接過程,提高焊(han)接效率,降低(di)激光(guang)焊(han)接的裝配精度和(he)應(ying)用(yong)成本。
采用(yong)激(ji)光(guang)(guang)(guang)和電(dian)弧進(jin)行焊(han)接的(de)方(fang)式(shi)有兩種方(fang)式(shi):一種是激(ji)光(guang)(guang)(guang)與電(dian)弧沿焊(han)接方(fang)向前后串行排(pai)列,且兩者相距較大,作(zuo)為兩個(ge)(ge)獨立的(de)熱(re)源作(zuo)用(yong)于焊(han)件(jian),主要利(li)用(yong)電(dian)弧熱(re)源對(dui)焊(han)縫(feng)進(jin)行預(yu)熱(re)或后熱(re),以提(ti)高材料對(dui)激(ji)光(guang)(guang)(guang)的(de)吸收(shou)率,改善焊(han)縫(feng)組織和性能;另一種是激(ji)光(guang)(guang)(guang)和電(dian)弧共同作(zuo)用(yong)于同一個(ge)(ge)熔池,焊(han)接過程中激(ji)光(guang)(guang)(guang)和電(dian)弧之間(jian)存在相互作(zuo)用(yong)和能量(liang)的(de)耦(ou)合(he),也就是我(wo)們常說的(de)激(ji)光(guang)(guang)(guang)電(dian)弧復合(he)焊(han)接。
激光電弧復(fu)合焊接(jie)又分同軸復(fu)合和旁軸復(fu)合,如(ru)圖3-55所示(shi)。
1. 同軸復(fu)合(he)(he)是(shi)激(ji)(ji)光束與電(dian)(dian)弧同軸作(zuo)用在焊(han)件的(de)同一位(wei)置,即(ji)(ji)激(ji)(ji)光穿過電(dian)(dian)弧中心或(huo)(huo)電(dian)(dian)弧穿過對(dui)(dui)稱布置的(de)環狀(zhuang)光束或(huo)(huo)多(duo)束幾何中心到達焊(han)件表面。激(ji)(ji)光-TIG電(dian)(dian)弧復(fu)合(he)(he)是(shi)較為(wei)簡單(dan)的(de)一種同軸復(fu)合(he)(he)焊(han)接(jie)方式,焊(han)接(jie)時,激(ji)(ji)光在熔池中形(xing)(xing)成的(de)小孔(kong)對(dui)(dui)電(dian)(dian)弧具有吸引(yin)和壓縮作(zuo)用,增強了電(dian)(dian)弧的(de)電(dian)(dian)流密(mi)度和穩(wen)定(ding)性(xing);即(ji)(ji)使在高速(su)焊(han)接(jie)條件下,仍可保證電(dian)(dian)弧穩(wen)定(ding),焊(han)縫(feng)成形(xing)(xing)良(liang)好,氣孔(kong)、咬邊等缺陷大大減少。它的(de)焊(han)接(jie)速(su)度一般是(shi)激(ji)(ji)光焊(han)接(jie)速(su)度的(de)2倍以(yi)上,更遠遠大于TIG焊(han)。這種復(fu)合(he)(he)焊(han)接(jie)方法主要用于薄板(ban)或(huo)(huo)薄壁不銹鋼管(guan)的(de)焊(han)接(jie),焊(han)接(jie)速(su)度高達15m/min,焊(han)縫(feng)成形(xing)(xing)明顯改善,且降(jiang)低了對(dui)(dui)坡口加工精(jing)度的(de)要求。
2. 旁(pang)軸復(fu)(fu)(fu)合(he)是激(ji)(ji)光(guang)束和(he)電弧呈(cheng)一定角度地作用(yong)在焊(han)(han)件的同一位置,激(ji)(ji)光(guang)束與電弧呈(cheng)不對稱的幾何關系。激(ji)(ji)光(guang)可(ke)以(yi)在電弧前方(fang)(fang)引(yin)入,也可(ke)以(yi)要電弧后(hou)方(fang)(fang)引(yin)入。旁(pang)軸復(fu)(fu)(fu)合(he)容易實現(xian),可(ke)以(yi)采用(yong)激(ji)(ji)光(guang)束與TIG電弧、MAG/MIG電弧或(huo)等(deng)離子弧復(fu)(fu)(fu)合(he)。激(ji)(ji)光(guang)-MIG復(fu)(fu)(fu)合(he)焊(han)(han)是目(mu)前應(ying)用(yong)最廣泛的一種復(fu)(fu)(fu)合(he)熱源(yuan)焊(han)(han)接(jie)方(fang)(fang)式,由于MIG具有(you)送絲和(he)熔滴過渡(du),一般采用(yong)旁(pang)軸復(fu)(fu)(fu)合(he)方(fang)(fang)式,激(ji)(ji)光(guang)-MIG復(fu)(fu)(fu)合(he)焊(han)(han)不但可(ke)增大熔深,改善(shan)(shan)焊(han)(han)接(jie)適應(ying)性,還可(ke)通過填充焊(han)(han)絲改善(shan)(shan)焊(han)(han)縫組織和(he)性能。采用(yong)激(ji)(ji)光(guang)-MIG復(fu)(fu)(fu)合(he)焊(han)(han)時焊(han)(han)接(jie)速度比單(dan)激(ji)(ji)光(guang)或(huo)單(dan)MIG焊(han)(han)時提高約1/3,而輸入能量減少了1/4,更(geng)(geng)體現(xian)出(chu)復(fu)(fu)(fu)合(he)焊(han)(han)的高效(xiao)和(he)節(jie)能優(you)勢。激(ji)(ji)光(guang)-MIG復(fu)(fu)(fu)合(he)焊(han)(han)比激(ji)(ji)光(guang)-TIG復(fu)(fu)(fu)合(he)焊(han)(han)焊(han)(han)的板厚(hou)更(geng)(geng)大,焊(han)(han)接(jie)適應(ying)性更(geng)(geng)強。
旁軸復合焊(han)接(jie)(jie)根據焊(han)接(jie)(jie)位置(zhi)(即(ji)兩熱源(yuan)的相(xiang)對(dui)位置(zhi))的不同(tong),又分為激光(guang)前置(zhi)(電(dian)(dian)弧在激光(guang)之后(hou)(hou))和激光(guang)后(hou)(hou)置(zhi)(電(dian)(dian)弧在激光(guang)之前)兩種(zhong)形(xing)式,其焊(han)接(jie)(jie)原理(li)示意圖如圖3-56所(suo)示。兩熱源(yuan)前后(hou)(hou)位置(zhi)的不同(tong)對(dui)焊(han)縫(feng)形(xing)貌、成形(xing)影(ying)響較(jiao)大。
用(yong)激光(guang)(guang)-MAG復合(he)焊(han)(han)進行試驗時,在完全相同的焊(han)(han)接(jie)參數下(xia),互換(huan)兩熱(re)源前(qian)后(hou)位置,從圖3-57和(he)圖3-58中(zhong)可(ke)以看出(chu)焊(han)(han)縫(feng)(feng)形貌截然不同,激光(guang)(guang)后(hou)置焊(han)(han)縫(feng)(feng),兩熱(re)源都達(da)到了有(you)效耦合(he),焊(han)(han)縫(feng)(feng)表面(mian)圓(yuan)潤飽滿,基(ji)本(ben)沒有(you)飛濺;激光(guang)(guang)前(qian)置焊(han)(han)縫(feng)(feng),焊(han)(han)縫(feng)(feng)寬窄不一且伴有(you)大顆粒飛濺,電弧不能穩定(ding)燃燒(shao),兩種熱(re)源耦合(he)較差。從上述(shu)圖中(zhong)還可(ke)以知道,當熱(re)源間距為6mm時,兩者焊(han)(han)縫(feng)(feng)形貌都處于最佳(jia)狀態。
圖3-59表示(shi)了(le)熱(re)(re)源間(jian)距與(yu)熔寬(kuan)關系,從圖中(zhong)除了(le)熱(re)(re)源間(jian)距=2mm外,激(ji)光(guang)前(qian)置時(shi)(shi)的(de)焊(han)縫熔寬(kuan)均比(bi)激(ji)光(guang)后置時(shi)(shi)較(jiao)寬(kuan)。這是因(yin)為激(ji)光(guang)前(qian)置時(shi)(shi)沒有電(dian)弧(hu)(hu)(hu)預(yu)熱(re)(re)母材,使焊(han)接金(jin)(jin)屬(shu)首(shou)先(xian)(xian)對激(ji)光(guang)是反射(she)作(zuo)(zuo)用(yong)(yong),待金(jin)(jin)屬(shu)表面微熔后,對激(ji)光(guang)能(neng)量(liang)的(de)吸(xi)收才變得明顯,不能(neng)形成激(ji)光(guang)小(xiao)孔效應(ying),激(ji)光(guang)致(zhi)等離(li)子體減少。因(yin)此,對電(dian)弧(hu)(hu)(hu)的(de)引導、壓縮作(zuo)(zuo)用(yong)(yong)減弱(ruo),弧(hu)(hu)(hu)柱在金(jin)(jin)屬(shu)表面作(zuo)(zuo)用(yong)(yong)面積增(zeng)(zeng)加(jia),導致(zhi)激(ji)光(guang)前(qian)置施(shi)(shi)焊(han)時(shi)(shi)的(de)焊(han)縫熔寬(kuan)較(jiao)寬(kuan)、熔深較(jiao)淺、余高小(xiao)還有不同(tong)程度的(de)咬(yao)邊缺陷。激(ji)光(guang)后置施(shi)(shi)焊(han)時(shi)(shi),電(dian)弧(hu)(hu)(hu)首(shou)先(xian)(xian)對焊(han)接作(zuo)(zuo)用(yong)(yong)點進行預(yu)熱(re)(re),金(jin)(jin)屬(shu)對激(ji)光(guang)能(neng)量(liang)吸(xi)收和小(xiao)孔效應(ying)增(zeng)(zeng)強,激(ji)光(guang)對電(dian)弧(hu)(hu)(hu)的(de)引導和壓縮作(zuo)(zuo)用(yong)(yong)增(zeng)(zeng)強,而且MAG焊(han)縫處于前(qian)傾焊(han)接方位,電(dian)弧(hu)(hu)(hu)力后排(pai)熔池金(jin)(jin)屬(shu)的(de)作(zuo)(zuo)用(yong)(yong)也增(zeng)(zeng)大,熔滴著陸點與(yu)激(ji)光(guang)在焊(han)接金(jin)(jin)屬(shu)上的(de)作(zuo)(zuo)用(yong)(yong)點距離(li)縮短(duan),提(ti)高了(le)能(neng)量(liang)的(de)利用(yong)(yong)率,因(yin)此焊(han)縫熔深要(yao)深些(xie),熔寬(kuan)相應(ying)要(yao)窄些(xie)。
圖(tu)3-60表示出熱源間(jian)(jian)距(ju)與熔(rong)(rong)深的關系(xi):從圖(tu)中可知,激光(guang)后置(zhi)時(shi)(shi),熔(rong)(rong)深隨著熱源間(jian)(jian)距(ju)的增(zeng)大而增(zeng)熔(rong)(rong),最小熔(rong)(rong)深為2.9mm;激光(guang)前(qian)置(zhi)時(shi)(shi)的熔(rong)(rong)深變化恰恰與激光(guang)后置(zhi)相反,它(ta)的最小熔(rong)(rong)深為1.2mm,最大熔(rong)(rong)深也只有3.9mm,充(chong)分(fen)說(shuo)明了激光(guang)與電弧空間(jian)(jian)位置(zhi)不(bu)同,焊接效果(guo)有較(jiao)大差異(yi)。
在(zai)激光(guang)-電弧(hu)復合焊接中,應選(xuan)擇(ze)激光(guang)后(hou)置的方(fang)式,電弧(hu)電流小(xiao)時熱源間距(ju)應選(xuan)2~3mm之(zhi)間;電弧(hu)電流較大(da)時熱源間距(ju)要選(xuan)5~6mm之(zhi)間。
3. 有(you)資料介紹(shao),用(yong)脈(mo)沖(chong)Nd:YAG 激光/TIG 電(dian)弧復合(he)熱(re)源在(zai)304不銹鋼板(ban)(ban)(板(ban)(ban)厚3mm,試板(ban)(ban)尺寸100mm×150mm)上進行堆焊(han)(han)試驗。來了解脈(mo)沖(chong)Nd:YAG激光/TIG電(dian)弧復合(he)熱(re)源堆焊(han)(han)過程中激光功率(lv)、激光束離焦量和(he)焊(han)(han)接速度對焊(han)(han)縫形貌、熔(rong)深(shen)和(he)熔(rong)寬的影響。
焊(han)(han)接設備采用(yong)JHM-1GXY-400X型脈(mo)沖Nd YAG 激(ji)光器和TIG WP300焊(han)(han)機。JHM-1GXY-400X型激(ji)光器最大(da)輸出功率500W,經焦(jiao)距(ju)70mm的(de)透(tou)鏡聚焦(jiao)后可獲(huo)得直(zhi)徑0.2mm的(de)焦(jiao)斑。TIG WP300焊(han)(han)機最大(da)電流300A。采用(yong)旁軸復合的(de)激(ji)光后置式進行堆焊(han)(han)。堆焊(han)(han)過(guo)程中采用(yong)氬氣對激(ji)光頭、TIG焊(han)(han)槍及工件高溫區域(yu)進行保(bao)護。
試(shi)驗參數均(jun)為(wei)(wei):TIG電流I,=190A,TIG電壓(ya)U1=11~12V,泵浦(pu)燈電流IL=190A,激光束離焦量e=-1mm,激光脈沖(chong)頻率f=15Hz,脈寬b=2.5ms,熱源間(jian)距(ju)d=0.5mm,焊接速(su)度(du)u=25cm/min(此組參數下(xia)激光功率為(wei)(wei)350W)。
試(shi)驗結果(guo)與分析:
1. 三種焊(han)(han)(han)(han)(han)(han)接方(fang)法焊(han)(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)(feng)橫(heng)(heng)截(jie)面(mian)(mian)(mian)(mian)形(xing)貌(mao)、熔(rong)深和(he)熔(rong)寬(kuan)(kuan)的(de)(de)(de)(de)(de)比(bi)(bi)較(jiao)。單一(yi)TIG焊(han)(han)(han)(han)(han)(han)、單一(yi)激(ji)光焊(han)(han)(han)(han)(han)(han)和(he)激(ji)光/TIG復(fu)(fu)(fu)合焊(han)(han)(han)(han)(han)(han)三種情況下得(de)到的(de)(de)(de)(de)(de)焊(han)(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)(feng)橫(heng)(heng)截(jie)面(mian)(mian)(mian)(mian)形(xing)貌(mao)如圖(tu)3-61所示:單一(yi)TIG焊(han)(han)(han)(han)(han)(han)接得(de)到典型熱(re)導焊(han)(han)(han)(han)(han)(han)焊(han)(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)(feng),焊(han)(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)(feng)深寬(kuan)(kuan)比(bi)(bi)很小(xiao);激(ji)光焊(han)(han)(han)(han)(han)(han)焊(han)(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)(feng)熔(rong)寬(kuan)(kuan)很小(xiao),熔(rong)深很大(da)(da),深寬(kuan)(kuan)比(bi)(bi)約為(wei)TIG焊(han)(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)(feng)的(de)(de)(de)(de)(de)12倍;復(fu)(fu)(fu)合焊(han)(han)(han)(han)(han)(han)焊(han)(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)(feng)寬(kuan)(kuan) 圖(tu)3-61 不同焊(han)(han)(han)(han)(han)(han)接熱(re)源(yuan)得(de)到的(de)(de)(de)(de)(de)焊(han)(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)(feng)橫(heng)(heng)截(jie)面(mian)(mian)(mian)(mian)形(xing)貌(mao)度和(he)焊(han)(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)(feng)熔(rong)深都明顯增大(da)(da),形(xing)成了(le)“釘頭”形(xing)的(de)(de)(de)(de)(de)焊(han)(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)(feng)橫(heng)(heng)截(jie)面(mian)(mian)(mian)(mian)形(xing)貌(mao)。三者的(de)(de)(de)(de)(de)焊(han)(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)(feng)橫(heng)(heng)截(jie)面(mian)(mian)(mian)(mian)面(mian)(mian)(mian)(mian)積分別(bie)為(wei)0.6m㎡、1.1m㎡和(he)2.4m㎡,復(fu)(fu)(fu)合焊(han)(han)(han)(han)(han)(han)焊(han)(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)(feng)的(de)(de)(de)(de)(de)橫(heng)(heng)截(jie)面(mian)(mian)(mian)(mian)面(mian)(mian)(mian)(mian)積比(bi)(bi)兩種熱(re)源(yuan)單一(yi)焊(han)(han)(han)(han)(han)(han)接得(de)到的(de)(de)(de)(de)(de)焊(han)(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)(feng)橫(heng)(heng)截(jie)面(mian)(mian)(mian)(mian)面(mian)(mian)(mian)(mian)積之和(he)還(huan)要(yao)大(da)(da)0.7m㎡左右,可見兩種熱(re)源(yuan)復(fu)(fu)(fu)合后產生了(le)“1+1>2”的(de)(de)(de)(de)(de)效應。
2. 激(ji)光(guang)(guang)(guang)功(gong)(gong)(gong)率(lv)對(dui)復合(he)(he)焊(han)(han)(han)縫(feng)形貌、熔(rong)(rong)(rong)深(shen)和(he)熔(rong)(rong)(rong)寬(kuan)的(de)影響。在其(qi)他工(gong)藝參數(shu)不變的(de)條件下改變激(ji)光(guang)(guang)(guang)功(gong)(gong)(gong)率(lv)(P2)為70W、210W和(he)350W進(jin)行復合(he)(he)焊(han)(han)(han)接,這(zhe)三(san)種情況焊(han)(han)(han)縫(feng)的(de)橫(heng)截面面積依次(ci)(ci)為1.07m㎡、1.68m㎡和(he)2.34m㎡,復合(he)(he)熱(re)(re)源的(de)功(gong)(gong)(gong)率(lv)分別(bie)為520W、660W和(he)800W。這(zhe)三(san)種情況下單(dan)位熱(re)(re)源功(gong)(gong)(gong)率(lv)形成的(de)焊(han)(han)(han)縫(feng)橫(heng)截面面積依次(ci)(ci)為2.06m㎡/kW,2.55m㎡/kW和(he)2.96m㎡/kW,從圖3-62可(ke)見。表明隨著(zhu)激(ji)光(guang)(guang)(guang)功(gong)(gong)(gong)率(lv)的(de)增大(da)(da)(da),復合(he)(he)熱(re)(re)源的(de)熱(re)(re)功(gong)(gong)(gong)率(lv)也(ye)增大(da)(da)(da),這(zhe)是因為激(ji)光(guang)(guang)(guang)功(gong)(gong)(gong)率(lv)增大(da)(da)(da)時(shi)小孔效應更加顯著(zhu),而且激(ji)光(guang)(guang)(guang)對(dui)TIG電弧的(de)穩弧和(he)壓縮(suo)作(zuo)用會(hui)增強,從而使電弧能量密(mi)度(du)增大(da)(da)(da)。同時(shi)從圖3-63中可(ke)以(yi)看到(dao),當(dang)激(ji)光(guang)(guang)(guang)功(gong)(gong)(gong)率(lv)從70W增大(da)(da)(da)到(dao)350W時(shi)熔(rong)(rong)(rong)深(shen)的(de)變化很顯著(zhu),從約(yue)0.9mm增大(da)(da)(da)到(dao)約(yue)2.0mm,增加了約(yue)110%,而熔(rong)(rong)(rong)寬(kuan)的(de)增幅(fu)相對(dui)小些(xie),只有(you)20%。總之,激(ji)光(guang)(guang)(guang)功(gong)(gong)(gong)率(lv)增大(da)(da)(da)時(shi),復合(he)(he)焊(han)(han)(han)焊(han)(han)(han)縫(feng)深(shen)和(he)熔(rong)(rong)(rong)寬(kuan)均增大(da)(da)(da),復合(he)(he)焊(han)(han)(han)焊(han)(han)(han)縫(feng)橫(heng)截面面積增大(da)(da)(da),復合(he)(he)熱(re)(re)源熱(re)(re)效率(lv)也(ye)增大(da)(da)(da)。
3. 激光(guang)束離(li)(li)(li)(li)(li)焦(jiao)量(liang)(liang)(liang)(liang)對復(fu)合焊(han)(han)(han)焊(han)(han)(han)縫(feng)形(xing)(xing)貌(mao)、熔(rong)深(shen)(shen)和熔(rong)寬的(de)(de)影(ying)響在(zai)離(li)(li)(li)(li)(li)焦(jiao)量(liang)(liang)(liang)(liang)分別為5、2、-1和-3四種情況下進(jin)行(xing)堆焊(han)(han)(han)試驗,從圖3-64中可以看出(chu),離(li)(li)(li)(li)(li)焦(jiao)量(liang)(liang)(liang)(liang)對焊(han)(han)(han)縫(feng)橫截面(mian)形(xing)(xing)貌(mao)有非常顯(xian)著的(de)(de)影(ying)響:在(zai)離(li)(li)(li)(li)(li)焦(jiao)量(liang)(liang)(liang)(liang)e=5mm時,由(you)于(yu)工(gong)件(jian)表(biao)面(mian)激光(guang)光(guang)斑直徑過圖3-64 離(li)(li)(li)(li)(li)焦(jiao)量(liang)(liang)(liang)(liang)對復(fu)合焊(han)(han)(han)焊(han)(han)(han)縫(feng)橫截面(mian)形(xing)(xing)貌(mao)的(de)(de)影(ying)響大(da),能(neng)量(liang)(liang)(liang)(liang)密(mi)(mi)度(du)較低(di)不足產生(sheng)小(xiao)孔效應,此時的(de)(de)焊(han)(han)(han)接(jie)模式為熱傳導焊(han)(han)(han)接(jie);離(li)(li)(li)(li)(li)焦(jiao)量(liang)(liang)(liang)(liang)e=2mm時,工(gong)件(jian)表(biao)面(mian)光(guang)斑直徑減(jian)(jian)小(xiao),功率密(mi)(mi)度(du)有所增(zeng)大(da),因此形(xing)(xing)成(cheng)了錐(zhui)狀的(de)(de)焊(han)(han)(han)縫(feng)橫截面(mian)形(xing)(xing)貌(mao);離(li)(li)(li)(li)(li)焦(jiao)量(liang)(liang)(liang)(liang)e=-1mm時得到的(de)(de)熔(rong)深(shen)(shen)最大(da);離(li)(li)(li)(li)(li)焦(jiao)量(liang)(liang)(liang)(liang)e=-3mm時也形(xing)(xing)成(cheng)了典型的(de)(de)釘(ding)頭焊(han)(han)(han)縫(feng),其焊(han)(han)(han)縫(feng)熔(rong)深(shen)(shen)和離(li)(li)(li)(li)(li)焦(jiao)量(liang)(liang)(liang)(liang)為e=-1mm時相比有所減(jian)(jian)少。
激(ji)光離(li)(li)焦(jiao)(jiao)量(liang)(liang)對復合焊焊縫(feng)熔(rong)(rong)(rong)深(shen)(shen)和熔(rong)(rong)(rong)寬尺(chi)寸的(de)影(ying)響如圖(tu)3-65所示,離(li)(li)焦(jiao)(jiao)量(liang)(liang)從(cong)(cong)-3mm增(zeng)(zeng)加(jia)到(dao)(dao)(dao)5mm的(de)過程(cheng)中,焊縫(feng)熔(rong)(rong)(rong)深(shen)(shen)先增(zeng)(zeng)大(da)(da),在離(li)(li)焦(jiao)(jiao)量(liang)(liang)為-1mm時達到(dao)(dao)(dao)最(zui)大(da)(da),然(ran)后(hou)隨著離(li)(li)焦(jiao)(jiao)量(liang)(liang)的(de)進一步(bu)增(zeng)(zeng)大(da)(da)焊縫(feng)熔(rong)(rong)(rong)深(shen)(shen)開始減(jian)小(xiao)(xiao);焊縫(feng)熔(rong)(rong)(rong)寬隨離(li)(li)焦(jiao)(jiao)量(liang)(liang)的(de)變(bian)化趨勢與熔(rong)(rong)(rong)深(shen)(shen)相(xiang)同,隨著離(li)(li)焦(jiao)(jiao)量(liang)(liang)從(cong)(cong)-3mm增(zeng)(zeng)大(da)(da)到(dao)(dao)(dao)5mm,焊縫(feng)熔(rong)(rong)(rong)寬也在離(li)(li)焦(jiao)(jiao)量(liang)(liang)為-1mm時增(zeng)(zeng)加(jia)到(dao)(dao)(dao)最(zui)大(da)(da),然(ran)后(hou)隨著離(li)(li)焦(jiao)(jiao)量(liang)(liang)的(de)進一步(bu)增(zeng)(zeng)大(da)(da)而減(jian)少,從(cong)(cong)圖(tu)3-65還可以看到(dao)(dao)(dao),離(li)(li)焦(jiao)(jiao)量(liang)(liang)變(bian)化會導(dao)致復合焊焊縫(feng)熔(rong)(rong)(rong)深(shen)(shen)發(fa)生較大(da)(da)幅度變(bian)化,而焊縫(feng)熔(rong)(rong)(rong)寬的(de)變(bian)化幅度則相(xiang)對較小(xiao)(xiao)。
在圖(tu)3-64四種(zhong)情況(kuang)下焊縫橫截(jie)面面積(ji)測量(liang)結果依(yi)次為(wei)0.94m㎡、1.29m㎡、2.37m㎡和(he)1.66m㎡。即隨著離焦(jiao)量(liang)從-3mm增大到5mm,復合熱源熱效率先增大,離焦(jiao)量(liang)為(wei)-1mm時達到最大,然后隨著離焦(jiao)量(liang)的進一步增大而(er)減小。
4. 焊(han)(han)接(jie)速(su)(su)度(du)對(dui)復(fu)合焊(han)(han)縫形貌、熔(rong)(rong)(rong)深和熔(rong)(rong)(rong)寬(kuan)(kuan)的(de)(de)影響(xiang)。在其(qi)他工藝參數(shu)保持不(bu)變(bian),焊(han)(han)接(jie)速(su)(su)度(du)分(fen)別為35cm/min、25cm/min和15cm/min的(de)(de)條件(jian)下分(fen)別進行焊(han)(han)接(jie)試驗,對(dui)焊(han)(han)縫形貌、熔(rong)(rong)(rong)深和熔(rong)(rong)(rong)寬(kuan)(kuan)進行測量:圖3-66中可以看出,隨著(zhu)焊(han)(han)接(jie)速(su)(su)度(du)的(de)(de)減小,焊(han)(han)縫熔(rong)(rong)(rong)深和熔(rong)(rong)(rong)寬(kuan)(kuan)都(dou)明顯增(zeng)大,當焊(han)(han)接(jie)速(su)(su)度(du)為15cm/min時,試板幾乎熔(rong)(rong)(rong)穿;圖3-67所(suo)示為焊(han)(han)接(jie)速(su)(su)度(du)對(dui)復(fu)合焊(han)(han)焊(han)(han)縫熔(rong)(rong)(rong)深和熔(rong)(rong)(rong)寬(kuan)(kuan)的(de)(de)影響(xiang),焊(han)(han)接(jie)速(su)(su)度(du)從15cm/min增(zeng)大到35cm/min時,復(fu)合焊(han)(han)焊(han)(han)縫熔(rong)(rong)(rong)深變(bian)化較(jiao)大,而(er)焊(han)(han)縫熔(rong)(rong)(rong)寬(kuan)(kuan)的(de)(de)變(bian)化則相(xiang)對(dui)較(jiao)小。
圖3-67中三種情況下焊縫截面面積依次為1.88m㎡、2.37m㎡和3.45m㎡。除了焊接速度外,三種情況下的其他工藝參數相同,為了消除熱輸入變化對焊縫橫截面面積的影響,計算了這三種情況下復合焊縫橫截面面積與焊接速度的乘積,結果依次為658mm3/min、592.5mm3/min 和517.5mm3/min,即截面面積與焊接速度的乘積是隨復合熱源焊接速度減少而降低,可見隨著焊接速度的減小,雖然復合焊焊縫橫截面積是不斷增大,但是復合熱源的熱效率是不斷減少的。
總之,焊接速(su)度(du)減小時(shi),復合焊縫(feng)熔深、熔寬和焊縫(feng)橫(heng)截面面積都(dou)增大(da)。
復(fu)合焊(han)接的主要優(you)點如下:
1. 焊(han)接能量(liang)集(ji)中,焊(han)接速(su)度(du)快,熔深大(da),比(bi)單純(chun)激光焊(han)或(huo)電弧焊(han)都好。
2. 電弧(hu)過程穩定,既使(shi)在小電流(liu)條件(jian)下施焊,也能穩定地焊接。
3. 對接(jie)頭間隙不敏感,比激光焊(han)好得多。
4. 可以通過焊絲來改善焊縫(feng)的性能(neng),比激光焊優(you)越。
5. 焊縫(feng)成形(xing)美觀、單位熱輸(shu)入低,焊接變形(xing)小(xiao),焊后矯正量小(xiao)與(yu)激光焊相當。
6. 復合焊(han)接是(shi)一種高(gao)效率低成本優質焊(han)縫的焊(han)接工藝。
激光(guang)-電弧復合焊的種類比較(jiao)多,可以根據產品的類別、材質和厚度進(jin)行選用。其種類有:
1. 百瓦級激光能量+電(dian)弧復合
熱(re)源顯示為電弧(hu)的(de)特(te)性(xing),激光(guang)功(gong)率(lv)能(neng)量比較(jiao)小(xiao)(W≤500),激光(guang)主(zhu)要起穩(wen)弧(hu)和(he)壓縮電弧(hu)、提高(gao)電弧(hu)能(neng)量利用率(lv)的(de)作用,多用于(yu)激光(guang)+鎢極(ji)氣體保護電弧(hu)的(de)復合焊接,比較(jiao)適(shi)合對薄板的(de)焊接。
2. 千瓦級激(ji)光能量(liang)+電弧復合
熱源兼有激(ji)光(guang)和電弧(hu)特性,能夠充分利用二者的(de)優點(dian),多(duo)用于(yu)激(ji)光(guang)+MIG/MAG電弧(hu)的(de)復(fu)合(he)焊(han)。適用于(yu)鋁合(he)金、鎂合(he)金、碳鋼(gang)(gang)(gang)、不銹(xiu)鋼(gang)(gang)(gang)、低合(he)金高強(qiang)鋼(gang)(gang)(gang)和超高強(qiang)鋼(gang)(gang)(gang)等材料的(de)焊(han)接。
3. 萬瓦級激光(guang)能量+電弧(hu)復合
熱源顯示激光的特點,具有較大的焊縫熔寬比,大多采用大功率CO2激光與MAG焊的復合。它難于實現全位置焊接,主要用于船板等大厚度的焊接,設備投資較大。
激光-電(dian)弧復合(he)焊(han)(han)接工藝是一種(zhong)具有遠大前途(tu)的(de)工藝方法,已在造船、汽車(che)等領域大厚(hou)度(du)(du)(du)高(gao)強度(du)(du)(du)鋼板(ban)的(de)焊(han)(han)接中得到成功的(de)應用(yong)。例(li)如,用(yong)焊(han)(han)接熱軋高(gao)強鋼,熔(rong)深可達(da)15mm,而變形量(liang)僅為普通焊(han)(han)接的(de)1/10;焊(han)(han)接板(ban)厚(hou)為6mm的(de)T型接頭,焊(han)(han)接速度(du)(du)(du)可達(da)3m/min,達(da)到了(le)焊(han)(han)接速度(du)(du)(du)快、變形小、質量(liang)高(gao)和間隙(xi)敏感性低(di)的(de)要求。